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ABSTRACT Viral pneumonias cause profound worldwide morbidity, necessitating
novel strategies to prevent and treat these potentially lethal infections. Stimulation
of intrinsic lung defenses via inhalation of synergistically acting Toll-like receptor
(TLR) agonists protects mice broadly against pneumonia, including otherwise-lethal
viral infections, providing a potential opportunity to mitigate infectious threats. As
intact lung epithelial TLR signaling is required for the inducible resistance and as
these cells are the principal targets of many respiratory viruses, the capacity of lung
epithelial cells to be therapeutically manipulated to function as autonomous antiviral
effectors was investigated. Our work revealed that mouse and human lung epithelial
cells could be stimulated to generate robust antiviral responses that both reduce vi-
ral burden and enhance survival of isolated cells and intact animals. The antiviral
protection required concurrent induction of epithelial reactive oxygen species (ROS)
from both mitochondrial and dual oxidase sources, although neither type I inter-
feron enrichment nor type I interferon signaling was required for the inducible pro-
tection. Taken together, these findings establish the sufficiency of lung epithelial
cells to generate therapeutically inducible antiviral responses, reveal novel antiviral
roles for ROS, provide mechanistic insights into inducible resistance, and may pro-
vide an opportunity to protect patients from viral pneumonia during periods of peak
vulnerability.

IMPORTANCE Viruses are the most commonly identified causes of pneumonia and
inflict unacceptable morbidity, despite currently available therapies. While lung epi-
thelial cells are principal targets of respiratory viruses, they have also been recently
shown to contribute importantly to therapeutically inducible antimicrobial re-
sponses. This work finds that lung cells can be stimulated to protect themselves
against viral challenges, even in the absence of leukocytes, both reducing viral bur-
den and improving survival. Further, it was found that the protection occurs via un-
expected induction of reactive oxygen species (ROS) from spatially segregated
sources without reliance on type I interferon signaling. Coordinated multisource ROS
generation has not previously been described against viruses, nor has ROS genera-
tion been reported for epithelial cells against any pathogen. Thus, these findings ex-
tend the potential clinical applications for the strategy of inducible resistance to pro-
tect vulnerable people against viral infections and also provide new insights into the
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capacity of lung cells to protect against infections via novel ROS-dependent mecha-
nisms.

KEYWORDS inducible resistance, Toll-like receptors, lung epithelium, mucosal
immunity, reactive oxygen species, viral pneumonia

Lower respiratory tract infections present a worldwide public health threat, exerting
a tremendous mortality and health care resource burden (1–3). Of an estimated 450

million annual episodes of pneumonia, viral pathogens may cause as many as 200
million cases (4, 5). Further, viruses are the most frequently identified pathogens in
community-acquired pneumonia requiring hospitalization among adults and children
in the United States (6, 7). Seasonal influenza pneumonias alone often cause more than
40,000 deaths in the United States annually, despite long-established vaccination
programs (8). Moreover, the history of 50 million worldwide influenza-related deaths
during the pandemic of 1918 –1919 (9) remains a cautionary reminder of the potential
lethality of this pathogen.

We have reported that the lung’s mucosal defenses can be stimulated to protect
mice against a wide array of otherwise lethal pneumonias, including those caused by
influenza A viruses (10–14). This inducible resistance is achieved following a single
inhaled treatment comprised of a synergistic combination of Toll-like receptor (TLR)
agonists: a diacylated lipopeptide ligand for TLR2/6, Pam2CSK4, and a class C unmeth-
ylated 2=-deoxyribocytidine-phosphate-guanosine (CpG) ligand for TLR9, ODN M362
(here, Pam2-ODN) (10, 13–15).

Inducible resistance against pneumonia requires intact lung epithelial TLR signaling,
whereas no individual leukocyte populations have been identified as essential to
Pam2-ODN-enhanced pneumonia survival (14). Given the epithelial requirement for
inducible antiviral resistance, we sought to determine whether epithelial cells were
sufficient to act as autonomous antiviral effector cells of therapeutically inducible
protection. We postulated that generating antiviral responses directly from the princi-
pal target of many respiratory viruses—the respiratory epithelium (16)— could be a
highly efficacious strategy to reduce virus-induced host pathology.

We report that Pam2-ODN induces active antiviral responses from intact lungs and
isolated lung epithelial cells that reduce viral burden, attenuate infectivity, and enhance
survival. Moreover, this protection requires epithelial generation of reactive oxygen
species (ROS) via dual mechanisms, providing meaningful insights into the mechanisms
of the novel synergistic interactions observed between the TLR ligands.

RESULTS
Pam2-ODN-inducible resistance is associated with reduced lung viral burden.

Although inducible protection against bacterial and fungal infections uniformly corre-
lates with reductions in lung pathogen burden (12–14, 17, 18), the Pam2-ODN effect on
lung viral burdens has not been assessed. Indeed, we found that the robust Pam2-
ODN-induced protection against mouse-adapted influenza A (H3N2) virus pneumonia
(Fig. 1A to C) is associated with significantly reduced lung virus burden, whether
measured by viral gene expression, tissue infectivity, or viral protein (Fig. 1C). This effect
was not restricted to influenza A virus or to orthomyxoviruses, as Pam2-ODN also
protected against Sendai virus infection and reduced lung virus burden (Fig. 1D and E).
Thus, Pam2-ODN-enhanced survival of infection correlates with reductions in pathogen
burden for every tested infection model, including viruses. Moreover, the Pam2-ODN-
induced lung viral burden differential continues to increase to the time of peak
mortality (see Fig. S1A in the supplemental material), and inoculum titration studies
(Fig. S1B) indicate that viral reductions of the magnitude observed in these studies are
sufficient to afford profound survival increases.

Antiviral responses from isolated epithelial cells. Although lung epithelial cell
TLR signaling is required for Pam2-ODN-induced influenza virus protection in vivo (14),
whether isolated lung epithelial cells are sufficient to generate autonomous antiviral
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FIG 1 Protective Pam2-ODN treatment reduces lung virus burdens. (A) Schematic of challenges. (B) Survival (left)
and weight (right) of C57BL/6J mice treated with PBS or Pam2-ODN 24 h prior to infection with influenza A virus.
(C) Lung viral burdens of mice in panel A 4 days after infection, assessed by qPCR for expression of influenza A virus
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responses to Pam2-ODN treatment was unknown. As the survival advantage in intact
animals was associated with reduced lung viral burdens, we tested whether Pam2-ODN
treatment of epithelial cells could restrict viruses in vitro without leukocyte contribu-
tions.

Figure 2A shows dose-dependent reductions in influenza virus burden of human-
derived HBEC3kt lung epithelial cell cultures by Pam2-ODN over a dynamic antiviral
range exceeding 2 log10 concentrations (shown in a fixed concentration ratio, from
0.03 �M ODN:0.12 �M Pam2 to 3.1 �M ODN:12.4 �M Pam2), confirming their suffi-
ciency to effect protection in vitro. Viral loads were further reduced at higher Pam2-
ODN concentrations (see Fig. S2 in the supplemental material), although epithelial
exposure to such high local concentrations is not likely achieved following nebulization
in vivo. In fact, based on estimation of Pam2-ODN deposition in 20 �l of airway lining
fluid of a mouse (19) or in 10 to 30 ml of airway lining fluid in a human (20), in vivo
epithelial exposure to Pam2-ODN, while likely much higher, may be as little as 6% of the
maximum dose (Fig. 2A). However, even 6% of this dose (0.21 �M ODN:0.80 �M Pam2)
is well within the antiviral range. To avoid presenting responses that are easily detect-
able but not physiologically relevant in vivo, all subsequent figures present data
achieved with 0.21 �M ODN and 0.80 �M Pam2, except when the presented data are
dose-response plots.

Synergistic, durable, and rapid protection. Concurrent treatment with Pam2 and
ODN promotes greater survival of influenza virus in pneumonia than the additive
effects of the two ligands delivered in isolation (10, 13). This was recapitulated in lung
epithelial cells, where Pam2-ODN combination treatment resulted in substantial viral
burden reductions while treatment with the individual ligands had no significant effect
on viral gene expression (Fig. 2B). Also recapitulating our in vivo observations, treat-
ment of lung epithelial cells with Pam2-ODN induced antiviral responses over a broad
temporal range, including when treatment was delivered after the infection (Fig. 2C).
Relatedly, the Pam2-ODN-induced viral burden benefit was evident very early after
infection (Fig. 2D).

Viral M1 protein burden in lung epithelial cells infected with influenza A virus for
24 h revealed that Pam2-ODN reduced both the number of cells demonstrably infected
with influenza virus and the per-cell viral protein amount among infected cells, result-
ing in a �90% reduction in virus burden (Fig. 2E and F). Comparable viral burden
reductions were also observed when we assayed responses via immunoblotting for
viral protein (Fig. 2G) or assessing tissue infectivity (Fig. 2H). Proportionate protection
was achieved across a very broad range of influenza A virus inocula (Fig. 2I) and
extended to lung epithelial cells challenged with Sendai virus (Fig. 2J). This effect does
not appear to result from Pam2-ODN-induced changes in expression or distribution of
sialic acid and its impact on viral attachment (Fig. S3). Effectively identical observations
of Pam2-ODN-induced antiviral efficacy were made in experiments with murine MLE-15
lung epithelial cells and human A459 cells (Fig. S4).

Pam2-ODN promotes epithelial cell survival without reliance on type I inter-
feron induction. Although Pam2-ODN reduced viral burdens, this did not address
whether the response actually protects the host cells or whether there is any fitness
cost to responding cells. Using trypan blue exclusion to differentiate live from dead
cells, we found the survival of HBEC3kt cells was significantly increased by Pam2-ODN
treatment at all time points following influenza virus infection (Fig. 3A). Most reported
cell-protective antiviral responses are dependent on induction of type I interferon

FIG 1 Legend (Continued)
nucleoprotein (NP) gene relative to the host 18S gene (RQ) (left), hemagglutination (center), and immunoblot
densitometry for viral M1 protein relative to host �-actin levels (right). PBS or Pam2-ODN was nebulized and
administered to mice 24 h prior to infection with Sendai virus. (D and E) Survival (D) and Sendai virus (E) M gene
expression in lung homogenates 4 days after infection. n � 15 mice/group in survival plots; n � 4 mice/group in
viral burden experiments. *, P � 0.03 compared to PBS-treated group; **, P � 0.004 compared to PBS-treated group;
†, only one mouse remained (summary statistic could not be calculated).
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FIG 2 Pam2-ODN-induced viral burden reductions in isolated epithelial cells. (A) HBEC3kt cells were treated with PBS or escalating doses of Pam2-ODN for
4 h, and then infected with influenza A virus. Results shown are expression levels of influenza virus NP gene expression after 24 h. (B) NP gene expression
in HBEC3kt cells 24 h after influenza virus infection following 4 h of treatment with the indicated agents. (C) HBEC3kt cells were treated with PBS or
Pam2-ODN for the times indicated, and results are relative to those after infection with influenza A virus. Results shown are NP expression 24 h after infection.
(D) NP gene expression in HBEC3kt cells at the indicated time points after infection. (E) HBEC3kt cells were treated for 4 h with PBS or Pam2-ODN and infected
for 24 h with influenza A virus. Micrographs show merged DAPI and fluorescent anti-M1 antibody images. Scale bar � 50 �m. (F) Quantification of cells
positive for M1 staining (left) and mean fluorescence intensity of M1-positive cells (right) from panel J. (G) Immunoblot for viral M2 protein in HBEC3kt cells
treated for 4 h with PBS or Pam2-ODN and then infected for 24 h with influenza A virus. (H) Results (TCID50 per milliliter) for HBEC3kt cells treated with
Pam2-ODN or PBS for 4 h and then infected with influenza A virus for 24 h. (I) NP gene expression of HBEC3kt cultures 24 h after infection with the indicated
influenza A virus inocula. (J) Sendai virus M gene expression in HBEC3kt cells 24 h after infection. n � 5 samples/condition. *, P � 0.03 compared to
PBS-treated group; **, P � 0.004 compared to PBS-treated group; †, P � 0.01 compared to either single-ligand treatment.
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signaling (16). However, although type I interferons are induced by infection with
influenza A virus or Sendai virus, we did not detect any increase in type I interferon
concentrations following Pam2-ODN treatment of primary mouse tracheal epithelial
cells (Fig. 3B and C). This is consistent with prior transcriptional analyses that revealed
no enrichment of type I interferon genes or interferon-stimulated genes following
Pam2-ODN treatment of mouse lungs or isolated lung epithelial cells (13–15), suggest-
ing that interferon-independent mechanisms contribute to the inducible reductions in
viral burden and enhanced survival. Indeed, while baseline susceptibility of interferon
signaling-deficient primary tracheal epithelial cells was dramatically increased, Pam2-
ODN still induced profound reductions in viral burden (Fig. 3D). Similarly, while sham-
treated Ifnar1�/� mice were more susceptible to influenza virus, they could be fully
protected by Pam2-ODN (Fig. 3E).

In parallel with the trypan blue exclusion assays, we performed experiments using
2,3bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT) con-
version and MitoTracker Red CMXRos fluorescence as indicators of cell viability. Con-
gruent with the trypan blue data, Pam2-ODN pretreatment resulted in greater conver-
sion of XTT and greater MitoTracker Red CMXRos fluorescence in HBEC3kt cells 24 h
after infection with influenza A virus (Fig. 4A and B). While it might have been otherwise
surmised that these findings were fully explained by enhanced survival of virus-
challenged epithelial cells, we were surprised to find that Pam2-ODN also increased XTT
conversion and MitoTracker Red CMXRos signal in the absence of viral challenge. While
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widely used as cell viability and proliferation markers, conversion of tetrazolium dyes
such as XTT can also indicate mitochondrial activation (21) or ROS generation (22).
Similarly, MitoTracker Red CMXRos fluorescence formally indicates the mitochondrial
membrane potential (Δ�m), from which cellular viability is inferred. Thus, the signal
enhancements in the absence of infection likely reflect a Pam2-ODN influence on ROS
production and/or Δ�m.

Induced epithelial ROS production. Given the XTT assay results, we sought to
characterize epithelial ROS generation following Pam2-ODN treatment. As most avail-
able reagents for detecting reactive oxygen and nitrogen intermediates have technical
limitations related to species specificity and interactions with the species they measure
(23–26), we assessed the induction of volatile species by comparing the detection
patterns of an array of partially overlapping detectors. Pam2-ODN treatment of
HBEC3kt cells in the presence of cell-permeant carboxy 2=,7=-dichlorodihydrofluo-
rescein diacetate (CO-H2DCFDA) stimulated rapid, significant induction of fluorescent
signal that was further separated from that of sham-treated samples throughout the
period of observation (Fig. 4C). Dose-dependent ROS induction was observed in
Pam2-ODN-treated cells whether they were exposed to CO-H2DCFDA, CellROX orange,
or 3=-(p-aminophenyl) fluorescein (APF). To simplify visual comparisons, volatile species
detection experimental results are presented as the mean fluorescence intensity
100 min after Pam2-ODN treatment (Fig. 4D to F).
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Conversely, fluorescence was only induced from cells stained with 4-amino-5-
methylamino-2=,7=-difluorescein (DAF-FM) diacetate at very high Pam2-ODN doses and
was not induced at all with conventional DAF-FM (Fig. S5A and B), suggesting little
induction of nitric oxide (NO) production. Further, there was no detectable induction of
singlet oxygen or peroxynitrite at any Pam2-ODN dose (Fig. S5C and D). Together, these
data suggest that Pam2-ODN induces epithelial production of superoxide (O2●�) and
hydrogen peroxide (H2O2), and possibly hydroxyl radical (●OH).

Antiviral protection requires ROS. To test the epithelial ROS requirement in thera-
peutically induced antiviral responses, we added polyethylene glycolated hydrophilic
carbon clusters (PEG-HCCs) (27, 28) to culture media. Acting by superoxide dismutation
and radical annihilation (27, 29), PEG-HCCs significantly reduced epithelial CO-H2DCFDA
and CellROX fluorescence without exerting an intrinsic antiviral effect (Fig. 5A and B).
The ROS-attenuating PEG-HCC treatment significantly impaired the Pam2-ODN-
induced epithelial antiviral effect (Fig. 5C), supporting an epithelial ROS requirement for
the protective response.

Similar to phagocytes, NADPH oxidases are the enzymes principally responsible for
production of epithelial ROS (30, 31). To ensure that the effects of PEG-HCC were
exerted via ROS-dependent mechanisms and to begin to identify relevant ROS sources,
we tested epithelial cells in the presence of the NADPH oxidase inhibitor GKT137831.
By attenuating inducible production of NADPH oxidase-dependent ROS, we confirmed
a recent report (32) that NADPH oxidase inhibition increases baseline epithelial sus-
ceptibility to influenza virus, and we discovered that NADPH-dependent ROS produc-
tion is also required for Pam2-ODN-induced antiviral protection (Fig. 5D). Although
multiple NADPH oxidase isoforms (NOX) are expressed in lung epithelia, the primary
sources of ROS are the dual oxidases DUOX1 and DUOX2 (also called NOX6 and NOX7)
(30–32). Amplex Red testing of conditioned media revealed that Pam2-ODN treatment
of HBEC3kt cells stimulated production of H2O2 (Fig. 5E), the primary product of DUOX1
and DUOX2. Moreover, gene expression analyses revealed enrichment of DUOX1,
DUOX2, and DUOXA2 following Pam2-ODN treatment, with DUOXA1 expression rela-
tively high at baseline (Fig. 5F).

To test the requirement for DUOX-derived ROS in the Pam2-ODN-induced antiviral
defense, we used shRNA to stably knock down DUOX1 and DUOX2 in HBEC3kt cells
(Fig. 5G and H). Knocking down either DUOX gene substantially reduced the H2O2

produced by cells, though a small but significant increase was still observable following
Pam2-ODN treatment (Fig. 5I). When we tested the functional importance of the H2O2

impairment, we found that knocking down DUOX2 profoundly impaired Pam2-ODN-
inducible protection, while knocking down DUOX1 appeared to have a more modest
effect (Fig. 5J to M). Loss of protection in the ROS-impaired cells did not appear to arise
from direct epithelial toxicity of the inhibitors or scavengers (Fig. S6). Application of
H2O2 directly to virus before scavenging with catalase impaired viral infectivity, and
applying H2O2 to HBEC3kt cells before scavenging with catalase reduced the influenza
virus burden 24 h after challenge (Fig. 5N to P), suggesting that ROS may play both
direct virucidal and also signaling roles in protection.

Epithelial antiviral responses require mitochondrial ROS. That Pam2-ODN enhanced
Δ�m prompted us to hypothesize that mitochondrial ROS (mtROS) might also contrib-
ute to protection, in addition to DUOX-derived ROS. Further, PEG-HCC functioning
partly by superoxide dismutation also suggested that non-H2O2 species (hence, from
non-DUOX sources) also contributed to the protection. Indeed, we found that Pam2-
ODN also induced dose-dependent generation of hydrocyanine-detected superoxide,
the principal species produced by mitochondria (Fig. 6A). Then, we used MitoSOX Red
as a targeted marker of mtROS concentration to further support that Pam2-ODN
induces dose-dependent increases in mtROS (Fig. 6B). The mitochondrion-targeted
superoxide dismutase mimetic mitoTEMPO reduced the Pam2-ODN-induced MitoSOX
Red signal to baseline levels (Fig. 6C). This completely abrogated the protective antiviral
response and revealed a requirement for mtROS in Pam2-ODN-induced protection
(Fig. 6D).
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To ensure that the mitoTEMPO effect was not attributable to nonspecific scavenging
of nonmitochondrial ROS, we tested whether pharmacological blockade of inducible
mtROS would attenuate antiviral resistance. Although mitochondrial electron transport
chain modulators have unpredictable, often opposing, effects on Δ�m and mtROS in
different models, we found that simultaneous application of trifluoromethoxy carbon-
ylcyanide phenylhydrazone (FCCP), an uncoupler of oxidative phosphorylation, and
2-thenoyltrifluoroacetone (TTFA), a complex II inhibitor, reliably reduced both baseline
and Pam2-ODN-induced mtROS production and Δ�m (Fig. 6E to G). As with mtROS
scavenging, FCCP-TTFA inhibition of Pam2-ODN-induced mtROS production com-
pletely abrogated the antiviral effect (Fig. 6H to J). Congruently, transiently exposing
influenza virus to actively respiring mitochondria isolated from mouse lungs impaired
viral infectivity (Fig. 6K and L). While Pam2 and ODN can each individually induce
significant DUOX and mitochondrial ROS generation, it appears that ODN is the
stronger stimulus of ROS production from both sources (Fig. 7A and B), offering insight
into how ODN contributes to the protection afforded by Pam2.

Inducible mtROS are required for antiviral protection. To ensure that the responses
observed in mouse and human lung epithelial cell lines were representative of native
responses, viral protection studies were repeated in primary human and mouse lung
epithelial cells grown at the air-liquid interface. Again, we observed dose-dependent
inductions of epithelial antiviral responses by Pam2-ODN (Fig. 8A and B) that revealed
synergistic ligand interactions (Fig. 8C). As with the immortalized cell lines, the antiviral
protection was completely abolished by mtROS scavenging (Fig. 8D).

Testing the in vivo requirement for mtROS in the Pam2-ODN-induced defense, mice
were treated with FCCP-TTFA by aerosol to block lung epithelial mtROS induction. To
avoid effects on mucociliary virus clearance, inhibitor treatments were given before
and after Pam2-ODN treatments, but not after viral challenge. mtROS inhibition signif-
icantly attenuated the Pam2-ODN-induced survival advantage, and the clinical scores of
surviving mice revealed considerably greater morbidity than among those that re-
ceived Pam2-ODN without mtROS inhibition (Fig. 8E and F). No toxicity was observed
in uninfected FCCP-TTFA-treated mice. Concordant with the effects on survival and
clinical score, mice that received mtROS inhibitors displayed significantly higher viral
lung burdens than the mice that received Pam2-ODN only (Fig. 8G), and their lungs
demonstrated more immunopathology (Fig. 8H). Unlike the in vitro study findings, it is
possible that the mtROS inhibitors also exert effects on nonepithelial cells or that
epithelial mtROS impairment may alter epithelial signals to other contributing cells, and
this possibility will be investigated. Scavenging of cellular ROS by PEG-HCC also
impaired Pam2-ODN-induced viral killing (Fig. 8I and J), though continuous treatment
with a scavenger over the extended period of observation was not practical, precluding
assessments of survival.

DISCUSSION

Although the airway and alveolar epithelia are often regarded as passive airflow
conduits or inert gas exchange barriers, it is evident that they possess intrinsic antimi-
crobial capacities that contribute to pathogen clearance under physiological conditions
(17, 33–35). The current work further substantiates the role of the lung epithelium in
the therapeutic induction of antiviral resistance and establishes the sufficiency of

FIG 5 Legend (Continued)
24 h after infection. (E) Amplex red was used to determine H2O2 production in HBEC3kt cell-conditioned medium. (F) HBEC3kt cell expression of the indicated
DUOX-related genes relative to 18S (RQ) 2 h after treatment with PBS or Pam2-ODN. (G and H) Immunoblots of HBEC3kt cells transfected with scrambled siRNA
(Scr) or siRNA targeting DUOX1 (G) or DUOX2 (H). (I) Amplex red fluorescence 100 min after treatment of transfected cells with PBS or Pam2-ODN. (J and K)
Transfected cells were treated for 4 h with PBS or Pam2-ODN, infected with influenza A virus, and then assessed for relative influenza virus NP gene expression
(J) or immunofluorescent labeling for viral M2 protein 24 h after infection. Magnification (panel K), �10. Scale bar � 50 �m. (L and M) Images in panel K were
analyzed for M2-positive cells (L) and mean fluorescence per 1,000 cells (M). (N) Influenza A virus stock was exposed to H2O2 for 10 min, treated with catalase,
inoculated into MDCK cell cultures, and submitted to hemagglutination assay. (O) HBEC3kt cells were exposed to H2O2 for 10 min, treated with catalase, and
then challenged with influenza A virus. Results shown are NP gene expression levels 24 h after challenge. (P) HBEC3kt cells were treated with Pam2-ODN and/or
catalase prior to influenza A virus challenge. *, P � 0.05 versus syngeneic PBS; **, P � 0.0005 versus syngeneic PBS; †, P � 0.0006 versus Pam2-ODN-treated
samples without ROS scavenger/inhibitor pretreatment; ††, P � 0.05 versus Pam2-ODN-treated samples with scrambled siRNA.
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isolated epithelial cells to generate protective antiviral responses following Pam2-ODN
treatment. While challenging paradigms about the role of the epithelium in antiviral
defense, these findings also offer the potential to protect patients from viral respiratory
infections during periods of vulnerability.

Viral respiratory tract infections are extremely common causes of morbidity. More
than 200 viruses cause respiratory infections (36). These diverse threats demonstrate a
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detection of freshly isolated mitochondria from lung homogenates versus medium alone. (L) Hemagglutination assay results for influenza virus inocula with
or without 15-min exposure to isolated mitochondria in panel K. *, P � 0.005 compared to PBS-treated control; **, P � 0.0005 compared to PBS-treated control;
†, P � 0.001 compared to the same Pam2-ODN dose but without inhibitor; ††, P � 0.0001 compared to no-mitochondria control; #, P � 0.01 compared to
no-mitochondria control.
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need for broadly protective antiviral strategies that can be applied prior to pathogen
identification. Here, we demonstrated robust protection against an orthomyxovirus and
a paramyxovirus, whether Pam2-ODN was delivered before or after infection.

As epithelial cells are principal targets of respiratory viruses (16), it is conceptually
appealing to directly stimulate them to avoid establishment and progression of viral
infections. Further, since respiratory viral infections frequently exacerbate preexisting
lung diseases (37) and since epithelial immune functions are central to both respiratory
virus clearance and asthma pathogenesis (36, 38–40), broadly stimulating epithelial
antiviral responses could conceivably improve health outcomes both by reducing acute
respiratory infection rates and by enhancing control of preexisting lung disease.

Single-stranded RNA viruses are primarily detected by RIG-I-like receptors, but TLR
functions also contribute to responses to influenza virus infections (41). However, while
most protective antiviral responses are tightly linked to interferon-stimulated genes (37,
41), we did not detect type I interferon responses to Pam2-ODN treatment, and we
observed no impaired protection in the absence of type I interferon signaling. Thus, we
sought interferon-independent antiviral mediators to explain the robust protection,
and we found ROS to be essential mediators.

ROS detection in the lungs is inherently challenging. Direct observation of most
species is only possible on a submillisecond time scale, and the reagents available for
ROS detection lack specificity (24). However, dose-dependent induction of signal from
multiple detectors following Pam2-ODN treatment of epithelial cells is strongly sup-
portive of ROS induction (23), as is the loss of protection when ROS generation is
impaired by pharmacological or genetic means. Superoxide and H2O2 are the predom-
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FIG 8 Pam2-ODN induces mtROS-dependent antiviral responses from primary lung epithelial cells and intact lungs. (A and B) Primary human bronchial
epithelial cells (A) or mouse tracheal epithelial cells (B) were cultured in differentiation medium under air-liquid interface conditions, treated with PBS or
Pam2-ODN for 4 h, infected with influenza A virus, and then harvested after 24 h. Results are the expression levels of the influenza A virus nucleoprotein
(NP) gene. (C) Primary mouse tracheal epithelial cells were treated with PBS, Pam2, ODN, or both ligands prior to infection with influenza A virus. Results
shown are the relative expression levels of the influenza virus NP gene 24 h after infection. (D) Primary mouse tracheal epithelial cells were pretreated with
MitoTEMPO (or not), treated for 4 h with PBS or Pam2-ODN, and then infected with influenza A virus. Results shown are the relative expression levels of the
influenza virus NP gene 24 h after infection. (E) Schematic of in vivo challenge. (F) Survival (left) and clinical scores (right) of mice treated with mtROS
inhibitors and/or Pam2-ODN prior to infection (or not) with influenza virus. (G) Quantification of lung viral burdens of mice in panel F by immunoblotting
for influenza virus M2 protein 4 days after infection. (H) Hematoxylin and eosin-stained micrographs of lungs from the indicated treatment groups.
Magnification, �40. Bar � 100 �m. Mice were treated with PEG-HCC or PBS daily from the day before infection until lung harvest. (I) Treatment schedule.
(J) Influenza virus burden 4 days after infection. *, P � 0.008 compared to PBS-treated control; **, P � 0.0001 compared to PBS-treated and infected controls;
†, P � 0.04 compared to Pam2-ODN-treated group that received no ROS inhibitor/scavenger.
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inant species produced by lung cells (25, 42, 43), and the described spectra of the
tested ROS detectors suggest these are the primary ROS induced by Pam2-ODN
treatment. This is consistent with the demonstrated requirement for DUOX2 and
mitochondrial ROS production for protection. Conversely, we detected little increase in
NO levels following Pam2-ODN treatment. This is notable, since increased levels of
inducible nitric oxide synthase and NO have been reported to contribute to antiviral
epithelial responses to rhinoviruses (37).

Antibacterial roles for ROS have been increasingly described, and ROS appear to
interact favorably with other antimicrobial molecules, such as neutrophil proteases (43).
The role of ROS in antiviral defense is much less clear. Some reports describe ROS-
associated oxidative stress as an influenza virus virulence factor (44), while others find
that influenza virus infections lead to decreased ROS production (32). These seemingly
contradictory observations underscore the complex management of oxidant balance in
airways (45) and, by corollary, support the relevance of such strong induction of ROS by
Pam2-ODN.

Impairment of DUOX enzymes in bronchial (32) or nasal (46) epithelial cells permits
increased viral replication, and the DUOX2-dependent product of the lactoperoxidase/
H2O2/thiocyanate system, hypothiocyanate, exerts virucidal effects (47). Further, we
and others have observed induction of DUOX-related genes in a number of models (31,
48, 49). Thus, our finding of DUOX2 participation in Pam2-ODN-induced protection is
not entirely surprising. However, it is unlikely that the ROS dependency simply reflects
H2O2-mediated hypothiocyanate production, as our in vitro models lack tracheobron-
chial seromucus glands as a lactoperoxidase source (50) and our models lack a source
of thiocyanate (48). Moreover, Pam2-ODN-induced protection is achieved without
applying ATP or manipulating calcium concentrations to stimulate ROS production
from DUOX2, as applied in prior antiviral models (51, 52). The precise mechanisms of
the inducible DUOX2-mediated virucidal activity remains an area of active investigation.

Unlike NOX/DUOX-generated ROS, mtROS are generated via leakage from the
electron transport chain (25), resulting in production of superoxide that diffuses
through mitochondrial membranes once dismutated to H2O2 (24). This process is
exquisitely tightly regulated by changes in scavenging, production, and localization (42,
53), so robust induction of mtROS by Pam2-ODN represents a notable homeostatic
perturbation.

mtROS are being increasingly described to participate in innate and adaptive
immunity (42). TLR-initiated signaling can induce antibacterial mtROS production in
macrophages (54), and antibacterial effects of coregulated NOX2- and mitochondrion-
derived ROS have been described in phagocytes (55). However, protective coordinated
ROS production has not been previously reported from these sources (DUOX2 and
mitochondria), in the cells (lung epithelium), or against viruses. Scavenging of mtROS
in nasal epithelial cells appears to increase baseline susceptibility to viral infection (56).
However, these native antiviral responses require induction of interferon-sensitive
genes that are not enriched by Pam2-ODN treatment. While working to understand
how mitochondria contribute to an epithelial antiviral state, it is also interesting to
consider whether some of the effects of mitochondrial inhibition may arise from the
highly related issue of Δ�m (57), rather than strictly from mtROS.

Taken together, these data reinforce the antimicrobial capacity of the lung epithelia
and provide insights into how these native defense may be exploited to protect
patients during periods of intensive virus exposure or when leukocyte elements of the
immune response are impaired.

MATERIALS AND METHODS
Animals, cells, and reagents. All general reagents were obtained from Sigma-Aldrich (St. Louis, MO),

except as indicated. All mouse experiments were performed with 5- to 8-week-old C57BL/6J or Ifnar1�/�

mice (The Jackson Laboratory, Bar Harbor, ME) of a single gender, in accordance with the Institutional
Animal Care and Use Committee of the University of Texas MD Anderson Cancer Center, protocol
00000907-RN01. Immortalized human bronchial epithelial (HBEC3kt) cells were kindly provided by John
Minna. Murine lung epithelial (MLE-15) cells were kindly provided by Jeffrey Whitsett. Normal human
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bronchial epithelial (NHBE) cells were purchased from Lonza (Basel, Switzerland). Immortalized cells were
authenticated by the MD Anderson Characterized Cell Line Core Facility. Mouse-adapted influenza
A/Hong Kong/8/68 virus (H3N2; Mouse Lung Pool 1/17/12) was kindly provided by Brian E. Gilbert (58).
Sendai virus (parainfluenza virus type 1) was obtained from the American Type Culture Collection (ATCC;
Manassas, VA).

Cell culture. HBEC3kt cells were cultured in keratinocyte serum-free medium (KSFM; Thermo, Fisher
Scientific, Grand Island, NY) supplemented with human epidermal growth factor and bovine pituitary
extract. MLE-15 cells were cultured in RPMI supplemented with 10% fetal bovine serum. Cultures were
maintained in the presence of penicillin and streptomycin. NHBE cells were expanded in submerged
culture using a Clonetics B-ALI air-liquid interface protocol and reagents (Lonza) and then seeded into
24-well plates containing transwell inserts coated with rat tail collagen type 1 (BD Biosciences, East
Rutherford, NJ). Three days after seeding, B-ALI growth medium was removed from both apical and basal
chambers, and B-ALI differentiation medium was added to only the basal chambers.

TLR treatments. For in vivo studies, S-[2,3-bis(palmitoyloxy)-propyl]-(R)-cysteinyl-(lysyl) 3-lysine
(Pam2CSK4) and ODN M362 (InvivoGen, San Diego, CA) were reconstituted in endotoxin-free water and
then diluted to the desired concentration in sterile phosphate-buffered saline (PBS). As previously
described (14), the Pam2-ODN was placed in an Aerotech II nebulizer (Biodex Medical Systems, Shirley,
NY) driven by 10 liters min�1 air supplemented with 5% CO2 for 20 min. The nebulizer was connected
by polyethylene tubing to a polyethylene exposure chamber. Twenty-four hours prior to infections, 8 ml
of Pam2 (4 �M):ODN (1 �M) was delivered via nebulization to unrestrained mice for 20 min, and then
mice were returned to normal housing. For in vitro studies, Pam2-ODN was added to the culture medium
4 h prior to inoculation with virus or at the indicated time point. Pam2-ODN was used in a fixed
concentration ratio but at varying doses, as indicated in the figures and Results section.

Infection models. As previously described (14), frozen stock (2.8 � 107 50% tissue culture infective
doses [TCID50] ml�1) of virus was diluted 1:250 in 0.05% gelatin in Eagle’s minimal essential medium and
delivered by aerosolization for 20 min to achieve the 90% lethal dose (LD90) to LD100 (~100 TCID50 per
mouse). Viral concentrations in the nebulizer before and after aerosolization were determined by
hemagglutination assay of infected Madin-Darby canine kidney (MDCK) cells (ATCC, Manassas, VA).
Sendai virus (parainfluenza virus type 1) was obtained from ATCC and expanded on cultures of rhesus
monkey kidney (RMK) cells (ViroMed Laboratories, Minnetonka, MN) in LHC-8 medium (Thermo, Fisher).
Following virus liberation and gradient purification, 40 �l of viral suspension (1.6 � 106 PFU/mouse) in
sterile PBS was delivered to anesthetized mice via intrapharyngeal instillation. For each survival group,
n was 10 to 15 mice. Animals were weighed daily and sacrificed if they met euthanasia criteria, including
signs of distress or loss of 25% preinfection body weight. To supplement the characterization of animal
morbidity, clinical scores were assigned to all mice by an investigator (V.V.K.) who was blinded to group
allocation. To calculate the clinical score, one point was assigned to a mouse for each of the observed
changes of hunched posture, ruffled fur, and reduced mobility, resulting in a maximum score of three
points per animal. Additional animals (n � 4 per group) were sacrificed 4 days after infection and lung
homogenates were assayed for viral burden as described below. For in vitro infections, viral inocula
(multiplicities of infection [MOI] of 0.01 to 1.0) of each strain were added to cells in submerged
monolayer or air-liquid interface cultures, as indicated for each experiment.

Pathogen burden quantification. To measure transcript levels of influenza A virus nucleocapsid
protein (np1) and Sendai matrix protein (M), samples were harvested in RNAlater (Qiagen, Hilden,
Germany) and RNA was extracted using the RNeasy extraction kit (Qiagen). Five hundred nanograms of
total RNA was reverse transcribed to cDNA by using an iScript cDNA synthesis kit (Bio-Rad, Hercules, CA)
and submitted to quantitative reverse transcription-PCR (RT-PCR) analysis with SYBR green PCR master
mix (Thermo, Fisher) on an ABI ViiA 7 real-time PCR system. Host 18S rRNA was similarly probed to
determine relative expression of viral transcripts. To measure levels of viral protein, immunoblotting for
influenza A virus M1 or M2 was performed, and results are presented relative to host �-actin levels. To
measure tissue infectivity, serial dilutions of lysed samples were added to cultures of MDCK cells. After
4 days, 1% turkey red blood cell solution was added to cultures and TCID50 values were calculated based
on hemagglutination.

Indirect immunofluorescence assay. Epithelial cells were grown on glass coverslips, treated as
indicated in the Results section, fixed in 2% paraformaldehyde, permeabilized with 0.1% Triton X-100,
and blocked with 10% serum in PBS. Cells were incubated with primary antibodies against viral M1 or M2
proteins (Santa Cruz Biotechnology) at a dilution of 1:200 for 1 h, then with AlexaFluor secondary
antibodies (Life Technologies, Inc., Carlsbad, CA) at a dilution of 1:500 for half an hour, and counter-
stained with 4=,6-diamidino-2-phenylindole (DAPI). Cells were visualized using a DeltaVision deconvolu-
tion fluorescence microscope (GE Life Sciences). Fluorescence intensity was quantified using ImageJ.

Cell viability assays. Epithelial cell viability was determined by formazan complex formation using
the colorimetric XTT cell viability kit (Cell Signaling, Inc., Danvers, MA) read in situ on a BioTek Synergy2
plate reader. For trypan blue exclusion assays, PBS-washed cells were mobilized with 0.25% trypsin,
washed in PBS again, resuspended in 100 �l of PBS, and mixed with equal volumes of 0.4% trypan blue
dye. Cell counts in samples were manually determined on a hemacytometer.

Lentiviral shRNA knockdown of DUOX1 and DUOX2. GIPZ human DUOX1 and DUOX2 lentiviral
shRNA clones were purchased from GE Dharmarcon (Lafayette, CO). Lentiviruses bearing human DUOX1
and DUOX2 shRNA were produced by transfection in 293T cells per the manufacturer’s instructions.
Infection efficiency was enhanced by addition of 8 �g/ml Polybrene into the culture medium and
centrifuging the cells at 2,000 rpm for 60 min at 32°C. Lentivirus-infected HBEC3kt cells were selected by
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cell sorting based on GFP expression. shRNA knockdown efficiency was determined by immunoblot
analysis.

ROS detection, scavenging, and inhibition. To assess ROS generation, cells were treated with 5 �M
of each indicated detector for 1 h before exposure to Pam2-ODN or the sham treatment. Fluorescence
was continuously measured on a BioTek Synergy2 for 250 min after treatment. Excitation/emission
wavelengths for ROS-detecting agents are as follows: CO-H2DCFDA, 490 nm/525 nm; APF, 490 nm/
525 nm; hydrocyanine (ROSstar 550; Li-Cor, Lincoln, NE), 510 nm/580 nm; 4-amino-5-methylamino-2=,7=-
difluorofluorescein (DAF-FM and DAF-FM diacetate), 490 nm/525 nm; MitoSOX red, 510 nm/580 nm;
MitoTracker Red CMXRos, 510 nm/580 nm; Amplex red, 570 nm/585 nm. The H2O2 concentration in
conditioned medium was interpolated from a standard curve as previously reported (52).

Cellular ROS were scavenged by 1 h exposure to PEG-HCC (5 �g/ml) prior to application of
Pam2-ODN or PBS. Mice were treated by nebulization of PEG-HCC (0.5 mg/ml) in 8 ml PBS 2 h before
Pam2-ODN (or PBS-0 treatment) immediately after Pam2-ODN treatment and daily after influenza virus
challenge. Mitochondrial ROS were scavenged by 1 h exposure to MitoTEMPO (30 nM; Thermo, Fisher)
prior to treatment with Pam2-ODN or PBS. NADPH oxidase activity was inhibited by 1 h exposure to
GKT137831 (10 �M; Selleckchem, Houston, TX). Disruption of in vitro mitochondrial ROS production was
achieved through concurrent application of FCCP (400 nM, Cayman Chemical, Ann Arbor, MI), and TTFA
(200 �M; Sigma). Mice were treated with 10 ml TTFA (200 mM) and FCCP (800 �M) by aerosol. Groups
received TTFA-FCCP (or sham) 5 h before infection, Pam2-ODN (or sham) 4 h before infection, or
TTFA-FCCP (or sham) 2 h before infection and then were submitted to influenza A virus challenge.

Immunoblotting. For immunoblot assays, samples were exposed to lysis buffer in the presence of
Halt protease and phosphatase inhibitor cocktail (Millipore), and the protein concentration in lysate was
determined in a bicinchoninic acid protein assay. Thirty-five micrograms of protein in 2� Laemmli buffer
was separated by SDS-PAGE and then transferred onto polyvinylidene difluoride membranes. The blots
were probed with influenza A virus M2 (14C2), DUOX1 (H-9; Santa Cruz Biotechnology), and DUOX2
(AP11227c; Abgent, San Diego, CA) primary antibodies, detected by secondary antibodies with conju-
gated horseradish peroxidase, and developed using a Pico-sensitive chemiluminescence kit (Pierce). All
membranes were stripped and probed for �-actin as the loading control. Densitometric semiquantitation
of the protein band intensities was performed using ImageJ.

Mitochondrial isolation and challenge. As previously described (59), mouse lungs were excised
and then disrupted using a Polytron homogenizer (Pro Scientific, Oxford, CT). Mitochondria were
extracted via serial centrifugation. The isolated mitochondria were plated in round-bottom 96-well
plates, and active mitochondrial respiration was confirmed based on MitoSOX fluorescence. Thereafter,
freshly thawed influenza virus was exposed to either the extracted mitochondria in Dulbecco’s modified
Eagle’s medium or medium alone for 10 min, then serial dilutions of the influenza virus-containing
medium was plated onto MDCK cells for a hemagglutination assay.

Statistical analysis. Statistical analysis was performed using SPSS v19 (SAS Institute, Cary, NC).
Student’s t test was used to compare the lung viral burdens between the groups. Error bars shown in all
the figures represent technical replicates within the displayed experiment, rather than aggregation of
experimental replicates. Percentages of mice surviving pathogen challenges were compared using the
Fisher exact test on the final day of observation, and the log rank test was used to compare the survival
distribution estimated by the Kaplan-Meier method.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00696-18.
FIG S1, EPS file, 2.3 MB.
FIG S2, EPS file, 0.8 MB.
FIG S3, EPS file, 2.1 MB.
FIG S4, EPS file, 2.8 MB.
FIG S5, EPS file, 2.2 MB.
FIG S6, EPS file, 2 MB.
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FIGURE LEGENDS FOR SUPPLEMENTARY FIGURES 
Figure S1.  Lung virus burden time course and correlation of viral inoculum and 
mouse survival.  (A) Mice were infected with influenza A 24 h after treatment with PBS 
(Sham) or Pam2-ODN, then lungs were harvested at the indicated day, homogenized 
and submitted to immunoblotting for viral M2 protein.  Shown are densitometry for viral 
M2:host GAPDH.  N = 3-4 mice/condition; * p < 0.05 vs. PBS treated; N.D., not 
detected. (B) Mice were infected with the indicated inocula of influenza A virus. Shown 
are mouse survival 14 d after challenge.  Red bars indicate inoculum intercepts at 80% 
and 20% survival.  N = 5-7 mice/condition.  
 
Figure S2. Higher dosing of Pam2-ODN further increases the antiviral effects 
stimulated from lung epithelial cells.  HBEC3kt (A) or MLE-15 (B) cells were treated 
for 4 h with PBS (sham), combined treatment with 3.1 μM ODN and 12.4 μM Pam2, or 
combined treatment with 9.3 μM ODN and 37.2 μM Pam2, then infected with influenza 
A at MOI 0.1.  Shown is expression of viral NP gene relative to host 18S 24 h after 
infection.  Panels are representative of at least three independent experiments.  * p < 
0.004 vs. PBS treated, ** p <0.02 vs 1x Pam2-ODN treated. 
 
Figure S3. Pam2-ODN does not modulate sialic acid-mediated virus attachment. 
(A) HBEC3kt lung epithelial cells were treated with Pam2-ODN or PBS for 4 h then 
exposed to Cy3-conjugated Smabucus nigra (SNA) lectin to detect sialic acid and DAPI 
to label nuclei. Shown are immunofluorescent micrographs (40x magnification, scale bar 
50 µm, left) and mean fluorescence intensity per cell (right). (B) Epithelial cells were 
treated for 4 h with Pam2-ODN or PBS, proteins were extracted and submitted to gel 
electrophoresis. The membrane was blotted with biotinylated SNA lectin, then exposed 
to Cy3-conjugated streptavidin. (C) Epithelial cells were treated for 4 h with Pam2-ODN 
or PBS, then the cells were treated with Cy3-conjugated SNA lectin for 1 h.  Protein was 
then extracted and submitted to gel electrophoresis. GAPDH loading controls for B and 
C are from the same membranes, but chemiluminescence is detected. (D) Epithelial 
cells were treated for 4 h with Pam2-ODN or PBS at 37°C, then infected on ice with 
biotinylated influenza A for 1 h. Cells were treated with sodium azide, mobilized, 
formalin-fixed, exposed to Cy3-conjugated streptavidin and submitted to flow cytometry 
to detect Cy3-positive cells. (E) Other cells were identically handled, except they were 
infected with non-biotinylated virus and were probed with FITC-labeled anti-NP 
antibody.     
 
Figure S4. Pam2-ODN induces antiviral responses from mouse and human lung 
epithelial cell lines. (A) MLE-15 cells were treated with PBS (sham) or escalating 
doses of Pam2-ODN for 4 h before infection with influenza A.  Shown is expression of 
viral NP gene relative to host 18S 24 h after infection. (B) MLE-15 cells were treated 
with PBS or Pam2-ODN at the indicated time relative to infection.  Shown is relative 
expression of viral NP gene at 24 h.  (C) MLE-15 cells were treated with PBS or Pam2-
ODN 4 h before infection with Sendai virus.  Shown is expression of M gene relative to 
host 18S at 24 h. Panels are representative of at least three independent experiments. * 
p < 0.005 vs. PBS treated. 
 



Figure S5. Limited induction of epithelial reactive nitrogen species, singlet 
oxygen or peroxynitrite by Pam2-ODN.  HBEC3kt cells were exposed to 4-Amino-5-
methylamino-2',7'-difluorofluorescein (DAF-FM, A), DAF-FM diacetate (B), Singlet 
Oxygen Sensor Green (C) or dihydrorhodamine 123 (D) prior to treatment with PBS 
(sham) or escalating doses of Pam2-ODN.  Shown are fluorescence intensities 100 min 
after treatment.  All panels are representative of at least three independent experiments. 
N = 8 wells/condition.  * p < 0.05 vs. PBS treated. 
 
Figure S6. ROS inhibition and scavenging strategies have no detected effect on 
cell survival. HBEC3kt cells (A) deficient in dual oxidase genes or (B) exposed to ROS 
scavengers were submitted to trypan blue exclusion assays to determine the number of 
viable cells in culture. No significant intergroup differe 
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